最低公共祖先 Lowest Common Ancestor 三连击.
basic problem
题目
Description
Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.
The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.
Notice:
Assume two nodes are exist in tree.
Example
For the following binary tree:
- LCA(3, 5) = 4
- LCA(5, 6) = 7
- LCA(6, 7) = 7
LinkedIn
LintCode Copyright
Binary Tree
Facebook
分析
在leetcode上直接递归遍历path会爆栈。估计面试官会要求O(1)的空间复杂度吧,这样就不会往遍历path的思路上想了。。。
在O(1)的空间复杂度下,思路就比较奇特了,猴子看题解后还想了一会才能明白。
首先,Given the root and two nodes in a Binary Tree
,表示给定的两个节点必然在树内,这一点非常重要,支撑解法的核心思想:
- 将求LCA转化为求Most Possible LCA
下面配合注释看代码。
可能是我比较迟钝吧,,,我觉得这题适合做follow up,为啥成basic problem了呢。
完整代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root == null) { return null; } return findMostPossibleLCA(root, p, q); } private TreeNode findMostPossibleLCA(TreeNode root, TreeNode node1, TreeNode node2) { if (root == null) { return null; } if (root == node1 || root == node2) { return root; } TreeNode leftPLCA = findMostPossibleLCA(root.left, node1, node2); TreeNode rightPLCA = lowestCommonAncestor(root.right, node1, node2); if (leftPLCA == null && rightPLCA == null) { return null; } if (leftPLCA != null && rightPLCA != null) { return root; } return leftPLCA != null ? leftPLCA : rightPLCA; } }
|
follow up 1
题目
Description
Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.
The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.
The node has an extra attribute parent
which point to the father of itself. The root’s parent is null.
Notice:
Assume two nodes are exist in tree.
Example
For the following binary tree:
- LCA(3, 5) = 4
- LCA(5, 6) = 7
- LCA(6, 7) = 7
LintCode Copyright
Binary Tree
分析
两节点仍然在树中,增加了parent指针。
有parent指针后,时间复杂度能降低到O(lgn),空间复杂度O(1)。
利用了链表题中的长度差同步技巧。
完整代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
| class ParentTreeNode { public ParentTreeNode parent, left, right; } public class FollowUp1 { public ParentTreeNode lowestCommonAncestor(ParentTreeNode root, ParentTreeNode p, ParentTreeNode q) { ParentTreeNode node1 = p; ParentTreeNode node2 = q; if (root == null || node1 == null || node2 == null) { return null; } int depth1 = getDepth(root, node1); int depth2 = getDepth(root, node2); if (depth1 == -1 || depth2 == -1) { return null; } ParentTreeNode startNode1 = node1; ParentTreeNode startNode2 = node2; int depth = depth1; if (depth1 > depth2) { for (int i = 0; i < depth1 - depth2; i++) { startNode1 = startNode1.parent; } depth = depth2; } else if (depth1 < depth2) { for (int i = 0; i < depth2 - depth1; i++) { startNode2 = startNode2.parent; } depth = depth1; } for (int i = 0; i < depth; i++) { if (startNode1 == startNode2) { return startNode1; } startNode1 = startNode1.parent; startNode2 = startNode2.parent; } throw new RuntimeException("UnknownError"); } private int getDepth(ParentTreeNode root, ParentTreeNode target) { int depth = 1; ParentTreeNode node = target; for (; node.parent != null; node = node.parent) { if (node == root) { break; } depth++; } if (node == root) { return depth; } return -1; } }
|
follow up 2
题目
Description
Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.
The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.
Return null if LCA does not exist.
Notice:
node A or node B may not exist in tree.
Example
For the following binary tree:
- LCA(3, 5) = 4
- LCA(5, 6) = 7
- LCA(6, 7) = 7
LinkedIn
LintCode Copyright
Binary Tree
Facebook
分析
两节点可能不在树中,节点也没有parent指针。
由于没有parent指针,那么根据树遍历找到节点至少是O(n)的时间复杂度。同时,还要花费O(n)的空间复杂度记录路径。
完整代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| public class FollowUp2 { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { TreeNode node1 = p; TreeNode node2 = q; if (root == null || node1 == null || node2 == null) { return null; } Stack<TreeNode> path1 = new Stack<>(); if (!dfsPreorder(root, node1, path1)) { return null; } Stack<TreeNode> path2 = new Stack<>(); if (!dfsPreorder(root, node2, path2)) { return null; } TreeNode lca = null; for (int i = 0; i < path1.size() && i < path2.size(); i++) { if (path1.get(i) != path2.get(i)) { break; } lca = path1.get(i); } return lca; } private boolean dfsPreorder(TreeNode root, TreeNode node, Stack<TreeNode> path) { path.push(root); if (root == node) { return true; } if (root.left != null && dfsPreorder(root.left, node, path)) { return true; } if (root.right != null && dfsPreorder(root.right, node, path)) { return true; } path.pop(); return false; } }
|